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IS OUR MATHEMATICS NATURAL? 
THE CASE OF EQUILIBRIUM STATISTICAL MECHANICS 

DAVID RUELLE 

ABSTRACT. IS human 20th-century mathematics a natural or an arbi
trary logical construct? Some insight into this ill-posed but fascinating 
question is gained from the study of mathematical physics. A number 
of ideas introduced by physical rather than mathematical necessity turn 
out later to be mathematically useful. (Equilibrium statistical mechan
ics has been a particularly rich source of such ideas.) In view of this the 
author argues that our mathematics may be much more arbitrary than 
we usually like to think. 

1. Is our mathematics natural? The story goes that, when he reached 
heaven, Wolfgang Pauli requested to see his Creator, and asked Him to explain 
why the fine structure constant of electrodynamics has the value a « 1/137. 
The Almighty went to the blackboard, and was busy writing formulae for a 
couple of hours. During that time Pauli sat, shaking his head and not saying 
a word. When finally the answer came: a~l — 137.0359..., Pauli stood up, 
still shaking his head, took the chalk and pointed to an essential flaw in the 
calculation. I heard the story from Res Jost, and I wouldn't bet that it is 
completely authentic. Anyway, I think that many of us would like to ask 
some questions about physics and mathematics of Him who knows—when the 
opportunity arises. There are a number of obvious questions. For instance, 
about the consistency of mathematics: has He perhaps set up things, as Pierre 
Cartier suggests [1], so that the axioms of set theory are inconsistent, but a 
proof of contradiction would be so long that it could not be performed in our 
physical universe? Is this universe of ours the best of all possible worlds? Is it 
the only one of its kind, or could the fine structure constant be different from 
what it is? What kind of mathematics could be developed by intelligent beings 
living on a distant planet? Or in another universe with different physical laws? 

Henri Poincaré once remarked that, for a question to make sense, one 
should be able to conceive of an answer which makes sense. This is not 
necessarily the case for the problems stated above. In fact, the problems 
which interest us most are often not easy to formulate satisfactorily. As a 
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consequence we usually settle for less, studying questions which make good 
sense mathematically, but may be philosophically somewhat futile. 

In this Gibbs Lecture I would like to address a modest aspect of an am
bitious question. Here is the ambitious question: How natural is our human 
20th-century mathematics? I am willing to define mathematics as a logical 
construct based on the axioms of set theory. The question is: how much does 
the existing construct depend on human nature and condition? Those human 
contingencies and historical accidents should not change the truth value of 
theorems, but might dramatically influence the course taken by mathemati
cal research, and the organization of the results obtained. I have stated the 
problem of the naturality of our mathematics in its ambitious generality, but 
I shall in fact restrict myself to a rather modest aspect of it. Before get
ting modest, however, let me make the bold suggestion that perhaps in a few 
decades we shall see what nonhuman mathematics looks like. I am not pre
dicting the imminent arrival of little green men from outer space, but simply 
the invasion of mathematics by computers. Since the human brain is a sort of 
natural computer, I see no reason why the artificial variety could not perform 
better in the specialized task of doing mathematical research. My guess is 
that, within fifty or a hundred years (or it might be one hundred and fifty) 
computers will successfully compete with the human brain in doing mathe
matics, and that their mathematical style will be rather different from ours. 
Fairly long computational verifications (numerical or combinatorial) will not 
bother them at all, and this should lead not just to different sorts of proofs, 
but more importantly to different sorts of theorems being proved. 

Be that as it may, I shall now return to human mathematics. Histori
cally, the investigation of the physical universe in which we live has been 
all-important in the shaping of our mathematics. Geometry comes from the 
study of physical space, differential equations are linked with mechanics, and 
so on. But it is also clear that 20th-century mathematics now largely produces 
its own problems, and that physics is only a secondary source of inspiration. 
Bourbaki's dream, and that of several generations of mathematicians, has 
been to find the natural structures of analysis and to develop them for their 
own merit. One can probably say that this dream has been the most powerful 
and fruitful source of inspiration for 20th-century mathematics. The role of 
physics, and now computer sciences, has been important but less central. One 
may thus feel that our mathematics has a rather natural central core, even 
though important branches may be influenced or motivated by applications to 
physics or computing. The many observed relations between different fields of 
mathematics support the idea of a natural central core. Little green men from 
outer space would have a similar central core for their mathematics; maybe 
it would be presented quite differently, but in their own language they would 
have a theorem saying that the image of a compact set by a continuous map 
is compact. 

It is this confidence about the natural central core of mathematics which I 
would like to question in this lecture. My guess is that the central core of our 
mathematics and that of the little green men from outer space may not have 
much in common. We have confidence in the naturality of our mathematics 
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because of its unity: many relations are observed between different fields. 
But it is not the unity of mathematics which is doubted: the mathematics of 
little green men may have many relations with ours, even though it would not 
have much in common. To use a pedantic geometric image, think of different 
mathematical fields as marbles (of the same diameter to simplify things). We 
may have an arbitrarily large number of them with all pairs touching (provided 
we are in a space of sufficiently large dimension). It is thus not difficult to 
imagine our many marbles and their many green marbles all close together, 
yet completely disjoint. 

Fine!—you may say—but how can one argue that our mathematics is not 
natural, without invoking computers of the future or little green men from 
outer space? What I would like to do is to appeal to mathematical physics. 
More precisely, I shall look for examples of mathematical ideas of physical 
origin which turn out to be mathematically natural and useful, although one 
would not have come to them easily if they had not been given to us, so to 
say, from outside. I claim that equilibrium statistical mechanics provides such 
examples. 

But before I try to prove this fairly modest claim, I have to explain what 
mathematical ideas of physical origin are supposed to be. Understanding the 
universe in terms of mathematical constructs or laws is not a simple affair. 
Obviously, the laws of physics are not decreed arbitrarily by man; neither are 
they proclaimed unambiguously by Nature itself. In fact, it remains a mystery 
why Nature can be so well described by mathematical constructs (see Eugene 
Wigner's beautiful paper on The unreasonable effectiveness of mathematics 
in the natural sciences [2]). We shall not concern ourselves with this mystery, 
or discuss the epistemology of physics. All that will matter for us is that in 
some branches of physics—notably equilibrium statistical mechanics—some 
deep mathematical concepts arise which have been forced on us by the study 
of the laws of physics. It would have taken a very long time to reach these 
concepts in a mathematical study uninfluenced by physics. 

2. Equilibrium statistical mechanics as a source of mathemat
ical concepts. Mathematical physics consists of the analysis of particular 
mathematical idealizations for different classes of natural phenomena. In the 
worst cases this gives rise to a fragmented multitude of little mathematical 
problems of no particular interest. Often enough, though, the little problems 
beg for insertion into a wider theory, and this process of aggregation leads to 
a new mathematical field where the concepts are supplied by physics—often 
with compelling mathematical necessity. 

A fact which is, at first sight, rather astonishing, is that the aggregation 
process just mentioned may unite unrelated areas of physics. Part of the 
explanation for this is sociological, and rests on the existence of a community 
of mathematical physicists. But another—essential—reason why the same 
new ideas serve to organize unrelated fields of physics is that these ideas are 
mathematically natural. 

For instance, in recent years, the ideas and methods of equilibrium statisti
cal mechanics have invaded relativistic quantum field theory to the extent of 
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practically causing a fusion of the two fields. [This is visible both at the level 
of the renormalization group ideas of Kenneth Wilson, and in the more rigor
ous work of constructive field theorists.] In a completely different direction, 
the concepts of equilibrium statistical mechanics have been found useful in the 
study of differentiable dynamical systems, and from there in the discussion of 
chaos and hydrodynamic turbulence. Note that the relation which this gives 
between statistical mechanics and fluid dynamics is purely mathematical: it 
has nothing to do with the fact that the fluid under study is also described—at 
the microscopic level—by (nonequilibrium) statistical mechanics. 

Besides the contribution of equilibrium statistical mechanics to the study 
of differentiable dynamical systems mentioned above, there have been con
tributions to other mathematical disciplines. Remember that ergodic theory 
has its historical origin in statistical mechanics. Remember also that the 
statistical mechanical definition of entropy has been used by Claude Shan
non to introduce the concept of information, which has in turn given the 
Kolmogorov-Sinai invariant of ergodic theory. In a completely different di
rection, the KMS equilibrium condition of quantum statistical mechanics has 
played an important role in the development of the Tomita-Takesaki theory 
of modular automorphisms of von Neumann algebras (see below). 

At this point it is necessary to become a bit more explicit and specific. 
I shall start by a short general description of what equilibrium statistical 
mechanics is about,1 then show three examples of contributions of equilibrium 
statistical mechanics to mathematics. 

Statistical mechanics deals with "large systems", i.e., large collections of 
identical subsystems contained in a box A C R3, in the limit where A becomes 
infinitely large. For commodity one commonly replaces R3 by the "lattice" 
1? (for instance by Z). Typically, for classical systems, a compact set F and 
a finite positive measure m on F are given. A configuration of the system is 
described by a point & € F for each i G A. A statistical state in A is simply a 
probability measure PA on FA. To obtain p\ one chooses an energy function 
E\ : FA —• R, and a number /? > 0 (inverse temperature); then one writes 

PA(<*0 = j-[exp-0EA(O] J ! "»(<%), 

where Z\ is the partition function 

ZA= f[exp-j3EA(t)]l[m(d&. 
J ieA 

Suppose that E\ is given for all finite A C Z", and satisfies an approximate 
additivity property: 2?AIUA2 ^ -̂ Ai + F\2 f° r large disjoint Ai, A2. Then it 
makes sense to study the limits of p\ when A —• 1?\ these are measures on 
F z " , invariant under translations of Z", and called equilibrium states. They 
are the central objects of (classical) equilibrium statistical mechanics. 

The fact that equilibrium states are natural objects has to do with equiva
lence of ensembles. This notion would take some time to explain (see [8, 9]) 

1 Mathematically oriented monographs on different aspects of equilibrium statistical me
chanics include [3, 4, 5, 6, 7]. 
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and that is probably why equilibrium statistical mechanics has been developed 
from physical considerations rather than from mathematical necessity. 

The amount of randomness per unit volume in an equilibrium state p is 
a physically natural quantity corresponding to the thermodynamic entropy 
(Boltzmann). As indicated earlier, the physical entropy concept leads to the 
definition of the Kolmogorov-Sinai invariant of ergodic theory. The study of 
the dependence of equilibrium states on (3 is mathematically very difficult, but 
physically important because discontinuities of this dependence correspond to 
phase transitions. Different equilibrium states (corresponding to different /?'s 
or to different interactions) are in general mutually singular measures. Phys
ical necessity then forces us to study families of mutually singular measures, 
and the same physical necessity also gives hints on how to do it. The powerful 
methods thus developed can then be used for other problems, for instance the 
study of hyperbolic differentiable dynamical systems (using a correspondence 
with statistical mechanics established by "Markov partitions"). 

What we have sketched is the statistical mechanics of classical systems. 
For quantum systems, the energy function E& is replaced by an operator, 
integrations by traces, and an equilibrium state p is a state on a C*-algebra 
rather than a probability measure. 

3. Three examples and some reflections. I shall proceed with a brief 
description of three examples rooted in statistical mechanics and blooming— 
more or less—in mathematical theory. 

The first example, the Lee-Yang circle theorem, is a beautiful failure. 

THEOREM (LEE AND YANG [10]). Let a({i,j}) e R, with - l < a({i,j}) 
< 1, for {ij} C { l , . . . , n } . Write 

XC{l,...,n} i€Xj$X 

where \X\ = cardX and the terms of order 0 and n are 1 and zn. Then all 
the zeros of P are on the circle \z\ = 1. 

In the application to statistical mechanics, P is the partition function Z& 
for a ferromagnetic spin system and the position of the zeros of Z\ controls 
phase transitions. This theorem, conjectured on a physical basis, originally 
took some effort to prove. A later idea, due to Taro Asano, now permits 
a short proof (see Appendix). I have called this beautiful result a failure 
because, while it has important applications in physics, it remains at this 
time isolated in mathematics. One might think of a connection with zeta 
functions (and the Weil conjectures); the idea of such a connection is not 
absurd, as our second example will show. But the miracle has not happened: 
one still does not know what to do with the circle theorem. 

The second example is the application of ideas of statistical mechanics to 
differentiable dynamics, made possible by the introduction of Markov parti
tions (Sinai [11, 12, 13], Bowen [14, 15]). Markov partitions transform the 
problems of ergodic theory for hyperbolic diffeomorphisms or flows into prob
lems of statistical mechanics on the "lattice" Z. Among the many applications 
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of the method, let us mention Sinai's beautiful proof [13] that hyperbolic dif-
feomorphisms do not necessarily have a smooth invariant measure.2 Also, 
since the geodesic flow on manifolds of negative curvature is hyperbolic, one 
has the possibility of studying zeta functions of Selberg's type. Using Markov 
partitions, these zeta functions are expressed as certain sorts of partition 
functions, which can be studied by statistical mechanics. Thus one obtains 
for instance a "prime number theorem" for the lengths of closed geodesies 
on a compact manifold of negative curvature (not necessarily constant)—see 
[16]. 

Our third example pertains to the problem of extending to noncommutative 
algebras the concepts which are natural for commutative algebras. (Commu
tative algebras are intimately related to geometry, which is a rich source of 
natural concepts.) Just as classical statistical mechanics provides powerful 
techniques for handling measures (a problem of commutative algebras), quan
tum statistical mechanics is a rich source of inspiration for noncommutative 
algebras. Let me now describe the third example. 

For a quantum system in a box A, with energy operator E A , the time 
evolution of an operator A is given by 

A^Tt
KA = eiE*tAe-iE^. 

On the other hand (taking the inverse temperature f3 equal to 1) we have a 
state PA defined by 

PA {A) = —trAe-E\ ZA = t r e " ^ . 
ZA 

Kubo, Martin and Schwinger remarked that there is a bounded continuous 
function F on {z: 0 < l m ^ < 1}, analytic for 0 < Imz < 1 and such that for 
all real t 

PA(B • T{A) = F(t), pA(jiA • B) = F(t +1). 

This situation persists when A —• oo: The equilibrium state p satisfies the 
KMS (Kubo-Martin-Schwinger) boundary condition with respect to the time 
automorphism r*. On the mathematical side, Tomita and Takesaki discovered 
and proved that if p is a faithful normal state on a von Neumann algebra M, 
there is a unique one-parameter automorphism group (r*) of M such that p 
satisfies the KMS condition with respect to (r*). This unexpected connection 
between statistical mechanics and the theory of von Neumann algebras was 
found after about ten years of independent developments on the physical and 
the mathematical sides. (The connection was of course very beneficial for 
both sides). The story is excellently told by Huzihiro Araki [17], who stresses 
the key role played by a paper of Haag, Hugenholtz and Winnink [18]. The 
ensuing developments have led to a rebirth of the theory of von Neumann 
algebras, rebirth in which the work of Alain Cormes has played a central role. 

2More precisely: There is a dense open set of C°° Anosov diffeomorphisms which do 
not have an invariant measure absolutely continuous with respect to the Riemann volume. 
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Our three examples were chosen somewhat arbitrarily among a number 
of others3 to show how different ideas originating in equilibrium statistical 
mechanics have fared differently in pure mathematics. Thus, in the third 
example the contribution of statistical mechanics was less essential than in 
the second, because of the independent development of the Tomita-Takesaki 
theory. In all cases, however, the impact of physical ideas was considerable. 
What does this tell us? 

There is no question that, among the physical theories of this century, 
equilibrium statistical mechanics has been extraordinarily productive of deep 
mathematical ideas. We cannot say that we fully understand why. By compar
ison, nonequilibrium statistical mechanics has been mathematically rather un
productive, although the conceptual problems it raises are not less interesting 
to the physicist. As far as we know, it is entirely possible that nonequilibrium 
statistical mechanics will some day develop into a rich source of mathematical 
inspiration. 

But let me come back to the original question of the "naturality" of math
ematics. There are some natural ways in which mathematics develops: trying 
to solve questions which appear interesting, while using methods which ap
pear feasible. Often enough, a long development leads to a result which now 
appears central, and a short cut is taken to this result, involving a change 
in point of view. This means that what is considered natural changes with 
time. For example, parallelism between mathematical theories (like "duality" 
in projective geometry) has been noticed long ago and used heuristically. But 
today one would find it ridiculous to derive two long series of parallel the
orems, marvelling forever at their correspondence: one would instead try to 
define an isomorphism between the two theories and get rid (in effect) of one 
of them. 

Let us now drag physics into the picture. Because of peculiar relevance cri
teria, what is natural from the point of view of physics is often quite different 
from what appears mathematically natural. The intrusion of physics therefore 
changes the historical development of mathematics. I have indicated that this 
intrusion of physics has been relatively modest in our century; it does how
ever put into question the naturality of our mathematics. Different historical 
developments are conceivable, as indicated by the examples discussed above, 
and by many more which could be considered. 

It may be time to attempt some cautious conclusions, remembering that the 
question of naturality of our mathematics is not a very well-posed problem. 
The influence of historical accidents should not be overrated: some concepts 
like those of natural numbers, or groups, would have to appear sooner or 
later in the development of human mathematics. Yet it is striking that some 
very good mathematical ideas have not been supplied by the internal logics 
of mathematical development, but have come from outside. Other external 
circumstances are conceivable, which would have led to different mathematics. 

3The recent definition of a "noncommutative Kolmogorov-Sinai invariant" by Connes, 
Narnhofer and Thirring [19, 20] comes to mind, or the applications to relativistic quantum 
mechanics, for which see [21]. 
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How different? My own judgment is that human mathematics could be quite 
different from what it is. 

I further think that whatever naturality our mathematics does have is not 
due so much to logical necessity as to the peculiar nature of the human mind. 
I mean the way in which our "logical thinking" is linked with visual intuition 
and tied to illogical "natural languages". I mean also our idiosyncratic liking 
for short formulations which we call "elegant", and for somewhat repetitive 
ways of arguing which we describe as "natural". 

This is not to say that mathematics is an arbitrary construct. Of course 
not: it is a structured subject and in some sense it is nothing but structure. 
That structure was not made for us to understand, yet the human mind can 
grasp it: that is what makes mathematics so fascinating. We like to think of 
the discovery of mathematical structure as walking upon a path laid out by 
the Gods. But, as Antonio Machado wrote, maybe there is no path: 

Caminante, son tus huellas 

el camino y nada mas; 

caminante, no hay camino, 

se hace camino al andar. 

[Walker, your footsteps/are the path, the path is nothing more;/walker, there 
is no path./ You make the path by walking.] 

Appendix: Proof of the Lee-Yang Circle Theorem. Consider the 
class A of polynomials of the form PI(ZI) where 

(i) ƒ is a finite set. 
(ii) zi = (zi)ieI. 

(iii) PI{ZI) is separately affine in each of the card I complex variables Z{. 
(iv) If \zi\ < 1 for all i E I then Pjfa) £ 0. 

Notice the following facts: 
I. For real a G [—1,1] the polynomial 

P{i,2}{zi,zi) = z\Z2 + azi +az2 + 1 

is in the class A. [Easy to see, by considering the involutive projective trans
formation z\ •—• z<2 defined by P{\^)[z\->Z(i) = 0: the fixed points are on the 
unit circle.] 

II. If / and J are disjoint and PI(ZI), PJ{ZJ) are in the class A, then the 
product PIUJ(ZIUJ) = PI{ZI)PJ(ZJ) is in the class A. 

III. Let J n {a, /?} = 0 and write 

PlU{a,(3}(ziU{a,0}) = AzaZfi + Bza + Czp + D, 

where A,B,C,D are polynomials in zj. Let 7 ^ / and define the Asano 
contracted polynomial 

P / U { 7 } ( ^ / U { 7 } ) = ^ + ^ 

then if Pi\j{a,/3) is in the class A, so is Pïu^x- [Take \zi\ < 1 for i G ƒ, then 
az2 + (B + C)z + D does not vanish for \z\ < 1. The product D/A of its roots 
therefore satisfies \D/A\ > 1, hence Az1 + D does not vanish for \z^ < 1.] 
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THEOREM. Let I be a finite set and choose a({i,j}) G R, with - 1 < 
a{{hj}) < 1 for all {i,j} C / . Write 

ftW=E^IIIlû(M), 
xci iexj^x 

where zx = Yliex ** > ^en Pi is in the class A. 

To see this, consider the polynomials z%Zj + a{{i,j}){z% + ^ ) + 1 (which 
are in A by I). By successive multiplication of those polynomials, making an 
Asano contraction whenever the same variable appears twice, one obtains Pi. 
From II and III it follows that Pi is in the class A. 

The Lee-Yang circle theorem is an immediate corollary of the above results. 
Note that Asano treated a more difHcult problem: he proved a quantum 
version of the Lee-Yang circle theorem. (See Asano [22, 23], and also Suzuki 
and Fisher [24], Ruelle [25].) 
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